Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(4): 142, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507144

RESUMO

Bimetallic nanoparticles (NPs) are considered superior in terms of stability and function with respect to its monometallic counterparts. Hence, in the present study Hibiscus rosa-sinensis flower extract was used to synthesis copper-iron bimetallic nanoparticles (HF-FCNPs). HF-FCNPs was characterized and its applications (biological and environmental) were determined. HF-FCNPs were spherical in shape with high percentage of copper inducted into the NPs. HF-FCNPs inhibited mammalian glucosidases [maltase (IC50: 548.71 ± 61.01 µg/mL), sucrase (IC50: 441.34 ± 36.03 µg/mL), isomaltase (IC50: 466.37 ± 27.09 µg/mL) and glucoamylase (IC50: 403.12 ± 14.03 µg/mL)], alpha-amylase (IC50: 16.27 ± 1.73 µg/mL) and acetylcholinesterase [AChE (IC50: 0.032 ± 0.004 µg/mL)] activities. HF-FCNPs showed competitive inhibition against AChE, maltase and sucrase activities; mixed inhibition against isomaltase and glucoamylase activities; whereas non-competitive inhibition against α-amylase activity. HF-FCNPs showed zone of inhibition of 16 ± 2 mm against S. mutans at 100 µg/mL concentration. HF-FCNPs inhibited biofilm formation of dental pathogen, S. mutans. SEM and confocal microscopy analysis revealed the disruption of network formation and bacterial cell death induced by HF-FCNPs treatment on tooth model of S. mutans biofilm. HF-FCNPs efficiently removed hexavalent chromium in pH-independent manner and followed first order kinetics. Through Langmuir isotherm fit the qmax (maximum adsorption capacity) was determined to be 62.5 mg/g. Further, HF-FCNPs removed both anionic and cationic dyes. Altogether, facile synthesis of HF-FCNPs was accomplished and its biological (enzyme inhibition and antibiofilm activity) and environmental (catalyst to remove pollutants) applications have been understood.


Assuntos
Hibiscus , Nanopartículas , Animais , alfa-Glucosidases/metabolismo , Glucana 1,4-alfa-Glucosidase , Corantes , Cobre , Hibiscus/metabolismo , Ferro , Acetilcolinesterase , Flores/metabolismo , Oligo-1,6-Glucosidase , Sacarase , Cromo , Biofilmes , alfa-Amilases , Mamíferos/metabolismo
2.
Mol Neurobiol ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966683

RESUMO

Neurodegenerative diseases (NDDs) have been increasing in incidence in recent years and are now widespread worldwide. Neuronal death is defined as the progressive loss of neuronal structure or function which is closely associated with NDDs and represents the intrinsic features of such disorders. Amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's, Parkinson's, and Huntington's diseases (AD, PD, and HD, respectively) are considered neurodegenerative diseases that affect a large number of people worldwide. Despite the testing of various drugs, there is currently no available therapy that can remedy or effectively slow the progression of these diseases. Nanomedicine has the potential to revolutionize drug delivery for the management of NDDs. The use of nanoparticles (NPs) has recently been developed to improve drug delivery efficiency and is currently subjected to extensive studies. Nanoengineered particles, known as nanodrugs, can cross the blood-brain barrier while also being less invasive compared to the most treatment strategies in use. Polymeric, magnetic, carbonic, and inorganic NPs are examples of NPs that have been developed to improve drug delivery efficiency. Primary research studies using NPs to cure AD are promising, but thorough research is needed to introduce these approaches to clinical use. In the present review, we discussed the role of metal-based NPs, polymeric nanogels, nanocarrier systems such as liposomes, solid lipid NPs, polymeric NPs, exosomes, quantum dots, dendrimers, polymersomes, carbon nanotubes, and nanofibers and surfactant-based systems for the therapy of neurodegenerative diseases. In addition, we highlighted nanoformulations such as N-butyl cyanoacrylate, poly(butyl cyanoacrylate), D-penicillamine, citrate-coated peptide, magnetic iron oxide, chitosan (CS), lipoprotein, ceria, silica, metallic nanoparticles, cholinesterase inhibitors, an acetylcholinesterase inhibitors, metal chelators, anti-amyloid, protein, and peptide-loaded NPs for the treatment of AD.

3.
Int J Obes (Lond) ; 47(12): 1179-1199, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37696926

RESUMO

Diabetes is a serious health issue that causes a progressive dysregulation of carbohydrate metabolism due to insufficient insulin hormone, leading to consistently high blood glucose levels. According to the epidemiological data, the prevalence of diabetes has been increasing globally, affecting millions of individuals. It is a long-term condition that increases the risk of various diseases caused by damage to small and large blood vessels. There are two main subtypes of diabetes: type 1 and type 2, with type 2 being the most prevalent. Genetic and molecular studies have identified several genetic variants and metabolic pathways that contribute to the development and progression of diabetes. Current treatments include gene therapy, stem cell therapy, statin therapy, and other drugs. Moreover, recent advancements in therapeutics have also focused on developing novel drugs targeting these pathways, including incretin mimetics, SGLT2 inhibitors, and GLP-1 receptor agonists, which have shown promising results in improving glycemic control and reducing the risk of complications. However, these treatments are often expensive, inaccessible to patients in underdeveloped countries, and can have severe side effects. Peptides, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are being explored as a potential therapy for diabetes. These peptides are postprandial glucose-dependent pancreatic beta-cell insulin secretagogues and have received much attention as a possible treatment option. Despite these advances, diabetes remains a major health challenge, and further research is needed to develop effective treatments and prevent its complications. This review covers various aspects of diabetes, including epidemiology, genetic and molecular basis, and recent advancements in therapeutics including herbal and synthetic peptides.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Incretinas/uso terapêutico , Incretinas/metabolismo , Polipeptídeo Inibidor Gástrico , Insulina/metabolismo , Peptídeos/uso terapêutico , Glucose/metabolismo , Glicemia/metabolismo
4.
J Infect Public Health ; 16(9): 1443-1459, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37523915

RESUMO

Tuberculosis is a disease of poverty, discrimination, and socioeconomic burden. Epidemiological studies suggest that the mortality and incidence of tuberculosis are unacceptably higher worldwide. Genomic mutations in embCAB, embR, katG, inhA, ahpC, rpoB, pncA, rrs, rpsL, gyrA, gyrB, and ethR contribute to drug resistance reducing the susceptibility of Mycobacterium tuberculosis to many antibiotics. Additionally, treating tuberculosis with antibiotics also poses a serious risk of hepatotoxicity in the patient's body. Emerging data on drug-induced liver injury showed that anti-tuberculosis drugs remarkably altered levels of hepatotoxicity biomarkers. The review is an attempt to explore the anti-mycobacterial potential of selected, commonly available, and well-known phytocompounds and extracts of medicinal plants against strains of Mycobacterium tuberculosis. Many studies have demonstrated that phytocompounds such as flavonoids, alkaloids, terpenoids, and phenolic compounds have antibacterial action against Mycobacterium species, inhibiting the bacteria's growth and replication, and sometimes, causing cell death. Phytocompounds act by disrupting bacterial cell walls and membranes, reducing enzyme activity, and interfering with essential metabolic processes. The combination of these processes reduces the overall survivability of the bacteria. Moreover, several phytochemicals have synergistic effects with antibiotics routinely used to treat TB, improving their efficacy and decreasing the risk of resistance development. Interestingly, phytocompounds have been presented to reduce isoniazid- and ethambutol-induced hepatotoxicity by reversing serum levels of AST, ALP, ALT, bilirubin, MDA, urea, creatinine, and albumin to their normal range, leading to attenuation of inflammation and hepatic necrosis. As a result, phytochemicals represent a promising field of research for the development of new TB medicines.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Proteínas de Bactérias/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos/efeitos adversos , Mycobacterium tuberculosis/genética , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Isoniazida/farmacologia , Mutação , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
6.
Environ Sci Pollut Res Int ; 30(10): 25050-25057, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34138435

RESUMO

The viral RNA of SARS-Coronavirus-2 is known to be contaminating municipal wastewater. We aimed to assess if COVID-19 disease is spreading through wastewater. We studied the amount of viral RNA in raw sewage and the efficiency of the sewage treatment to remove the virus. Sewage water was collected before and after the activated sludge process three times during summer 2020 from three different sewage treatment plants. The sewage treatment was efficient in removing SARS-CoV-2 viral RNA. Each sewage treatment plant gathered wastewater from one hospital, of which COVID-19 admissions were used to describe the level of disease occurrence in the area. The presence of SARS-CoV-2 viral RNA-specific target genes (N1, N2, and E) was confirmed using RT-qPCR analysis. However, hospital admission did not correlate significantly with viral RNA. Moreover, viral RNA loads were relatively low, suggesting that sewage might preserve viral RNA in a hot climate only for a short time.


Assuntos
COVID-19 , SARS-CoV-2 , Águas Residuárias , Humanos , COVID-19/epidemiologia , RNA Viral/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Arábia Saudita/epidemiologia , Esgotos/virologia , Águas Residuárias/virologia
7.
Environ Res ; 207: 112211, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656634

RESUMO

Recent year, bacterial laccases are increasing interest in the field of industry and environmental applications especially decolorization of azo dyes. In industry, the dyes are present in stable nature including chemicals and lights. Due to these defects, the novel approaches are needed to removal of dyes before discharging into the environment. Among the various technologies, biological treatment methods and their strategies are very important, because of the decolorization and detoxification. Consecutively, biological mediated dyes removal are emerged with high potential especially microbes. Microbial laccases creates up new opportunities for their commercial applications. In this study, laccases were produced from Bacillus cereus (B. Cereus) and Pseudomonas parafulva (P. parafulva) by sub merged fermentation. For immobilization, the produced laccases were subjected to purify using 80% saturated ammonium sulphate and followed by dialysis. Then, crude laccases were immobilized through copper-alginate entrapment method. The maximum immobilized enzyme activity of the immobilized laccases were shown pH 8 at 50 °C and pH 7 at 40 °C for B. Cereus and P. parafulva respectively. In contrast, the normal enzyme activity was pH 10 at 40 °C and pH 8 at 40 °C were indicated for Bacillus cereus and P. parafulva respectively. Next, the free and immobilized laccases were performed the decolorization of three azo dyes T-blue, yellow GR and orange 3R, and exhibited that the 91.69 and 89.21% of Orange 3R were completely decolorized by both the B. Cereus and P. parafulva laccases when compared with free laccases enzymes. The confirmation of decolorization was monitored by UV-vis spectroscopy and FTIR spectroscopy, which clearly confirm the changes of peaks when compared with normal laccases. Finally, we have concluded that the B. Cereus and P. parafulva laccases are very important in azo dye decolorization and these used in future biological treatment of dyeing effluents.


Assuntos
Compostos Azo , Lacase , Compostos Azo/química , Bactérias , Biodegradação Ambiental , Cor , Corantes/química , Lacase/química , Indústria Têxtil , Têxteis
8.
Int J Nanomedicine ; 16: 5621-5632, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34429603

RESUMO

PURPOSE: 4-Hydroxyisophthalic acid (4-HIA) is a bioactive compound present in the roots of Decalepis hamiltonii, which has attracted considerable attention in attenuating oxidative stress-related neurodegenerative diseases. However, its efficacy is limited because of its low solubility and bioavailability. Therefore, the present study aimed to encapsulate 4-HIA using biocompatible copolymer polylactide-co-glycolide (PLGA) and evaluate its antioxidant and neuroprotective potential. METHODS: The nanoparticles (NPs) were fabricated by solid/oil/water (s/o/w) emulsion technique and characterized using XRD, SEM, HR-TEM, and FTIR spectroscopy. Antioxidant assays such as 1,1 diphenyl-2-picrylhydrazyl (DPPH), superoxide, and hydroxyl radical scavenging ability were performed to assess the antioxidant potential of the fabricated NPs. RESULTS: The bioactive component, 4-HIA, was efficiently encapsulated by the PLGA polymer and was found to be spherical and smooth with a size <10nm. 4-HIA showed better scavenging capability in DPPH and superoxide assays as compared to 4-HIA encapsulated PLGA and butylated hydroxytoluene (BHT). In contrast, 4-HIA encapsulated PLGA NPs exhibited a significant hydroxyl radical scavenging activity than 4-HIA and BHT alone. Further, the encapsulated NPs efficiently curtailed hydrogen peroxide (H2O2)-induced cytotoxicity in PC12 cells. CONCLUSION: Our findings indicate that 4-HIA encapsulated PLGA NPs might be a therapeutic intervention towards the effective management of oxidative stress as it has exhibited efficient neuroprotective potential against H2O2-induced oxidative stress in PC12 cells.


Assuntos
Peróxido de Hidrogênio , Nanopartículas , Animais , Portadores de Fármacos , Emulsões , Células PC12 , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos
9.
Int J Nanomedicine ; 16: 5633-5650, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434046

RESUMO

BACKGROUND: The constant rise of microbial biofilm formation and drug resistance to existing antimicrobial drugs poses a significant threat to community health around the world because it reduces the efficacy and efficiency of treatments, increasing morbidity, mortality, and health-care expenditures. As a result, there is an urgent need to develop novel antimicrobial agents that inhibit microbial biofilm formation. METHODS: The [Ni0.4Cu0.2Zn0.4](Fe2-xDyx)O4(x≤0.04) (Ni-Cu-Zn) nano spinel ferrites (NSFs) have been synthesized by the sol-gel auto-combustion process and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray (EDX) and transmission electron microscopy (TEM). The antimicrobial, antibiofilm and antiproliferative activities of Ni-Cu-Zn NSFs were also examined. RESULTS: The XRD pattern confirms the secondary phase DyFeO3 and Fe2O3 for substituted Dy3 + samples, and the crystallite size ranged from 10 to 19 nm. TEM analysis of NSFs revealed that the particles were cube-shaped and 15nm in size. NSFs exhibited significant antimicrobial, antibiofilm and antiproliferative activity. At concentration of 1 mg/mL, it was found that the NSFs (ie, x=0.0, x=0.01, x=0.02, x=0.03 and x=0.04) inhibit biofilm formation by 27.6, 26.2, 58.5, 33.3 and 25% for methicillin-resistant Staphylococcus aureus (MRSA) and 47.5, 43.5, 48.6, 58.3 and 26.6% for Candida albicans, respectively. SEM images demonstrate that treating MRSA and C. albicans biofilms with NSFs significantly reduces cell adhesion, colonization and destruction of biofilm architecture and extracellular polymeric substances matrices. Additionally, SEM and TEM examination revealed that NSFs extensively damaged the cell walls and membranes of MRSA and C. albicans. Huge ultrastructural alteration such as deformation, disintegration and separation of cell wall and membrane from the cells was observed, indicating significant loss of membrane integrity, which eventually led to cell death. Furthermore, it was observed that NSF inhibited the cancer cell growth and proliferation of HCT-116 in a dose-dependent manner. CONCLUSION: The current study demonstrated that the synthesized Ni-Cu-Zn NSFs could be used to develop potential antimicrobial surface coatings agents for a varieties of biomedical-related materials and devices in order to prevent the biofilms formation and their colonization. Furthermore, the enhanced antiproliferative properties of manufactured SNFs suggest a wide range of biomedical applications.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Biofilmes , Compostos Férricos , Testes de Sensibilidade Microbiana , Zinco
10.
J King Saud Univ Sci ; 33(7): 101574, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34421280

RESUMO

COVID-19 pandemic has severe impacts on human health and economy worldwide. Aerosols and droplets are the major routes of transmission of SARS-CoV-2 coronavirus causing COVID-19 disease. However, wastewater is a possible transmission pathway. Therefore, many studies have been published about the relation of wastewater and COVID-19 disease. Many studies have shown the presence of viral RNA in wastewater throughout the world recently. Therefore, research on wastewater treatments and disinfection methods are needed. Communities must make sure that the virus is not transmitted via treated wastewater. This review focuses on the Saudi Arabian wastewater treatment and disinfection techniques to assess the possibility of SARS-CoV-2 transmission through wastewaters. In view of the current pandemic situation, the wide analysis of wastewater treatments in Saudi Arabia is needed. The review gives guidelines to develop the wastewater treatment in Saudi Arabia.

11.
Antibiotics (Basel) ; 10(6)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208591

RESUMO

Biofilms not only protect bacteria and Candida species from antibiotics, but they also promote the emergence of drug-resistant strains, making eradication more challenging. As a result, novel antimicrobial agents to counteract biofilm formation are desperately needed. In this study, Terminalia catappa leaf extract (TCE) was used to optimize the TCE-capped silver nanoparticles (TCE-AgNPs) via a one-pot single-step method. Varied concentrations of TCE have yielded different sized AgNPs. The physico-chemical characterization of TCE-AgNPs using UV-Vis, SEM, TEM, FTIR, and Raman spectroscopy have confirmed the formation of nanostructures, their shape and size and plausible role of TCE bio-active compounds, most likely involved in the synthesis as well as stabilization of NPs, respectively. TCE-AgNPs have been tested for antibiofilm and antimicrobial activity against multidrug-resistant Pseudomonas aeruginosa (MDR-PA), methicillin-resistant Staphylococcus aureus (MRSA), and Candida albicans using various microbiological protocols. TCE-Ag-NPs-3 significantly inhibits biofilm formation of MDR-PA, MRSA, and C. albicans by 73.7, 69.56, and 63.63%, respectively, at a concentration of 7.8 µg/mL, as determined by crystal violet microtiter assay. Furthermore, SEM micrograph shows that TCE-AgNPs significantly inhibit the colonization and adherence of biofilm forming cells; individual cells with loss of cell wall and membrane integrity were also observed, suggesting that the biofilm architecture and EPS matrix were severely damaged. Moreover, TEM and SEM images showed that TCE-AgNPs brutally damaged the cell wall and membranes of MDR-PA, MRSA, and C. albicans. Additionally, extreme ultrastructural changes such as deformation, disintegration, and separation of cell wall and membrane from the cells, have also been observed, indicating significant loss of membrane and cell wall integrity, which eventually led to cell death. Overall, the research revealed a simple, environmentally friendly, and low-cost method for producing colloidal TCE-AgNPs with promising applications in advanced clinical settings against broad-spectrum biofilm-forming antibiotic-resistant bacteria and candida strains.

12.
Saudi J Biol Sci ; 28(8): 4560-4568, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33935562

RESUMO

The human-to-human transmitted respiratory illness in COVID-19 affected by the pathogenic Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2), which appeared in the last of December 2019 in Wuhan, China, and rapidly spread in many countries. Thereon, based on the urgent need for therapeutic molecules, we conducted in silico based docking and simulation molecular interaction studies on repurposing drugs, targeting SARS-CoV-2 spike protein. Further, the best binding energy of doxorubicin interacting with virus spike protein (PDB: 6VYB) was observed to be -6.38 kcal/mol and it was followed by exemestane and gatifloxacin. The molecular simulation dynamics analysis of doxorubicin, Reference Mean Square Deviation (RMSD), Root Mean Square fluctuation (RMSF), Radius of Gyration (Rg), and formation of hydrogen bonds plot interpretation suggested, a significant deviation and fluctuation of Doxorubicin-Spike RBD complex during the whole simulation period. The Rg analysis has stated that the Doxorubicin-Spike RBD complex was stable during 15,000-35,000 ps MDS. The results have suggested that doxorubicin could inhibit the virus spike protein and prevent the access of the SARS-CoV-2 to the host cell. Thus, in-vitro/in-vivo research on these drugs could be advantageous to evaluate significant molecules that control the COVID-19 disease.

13.
J Fungi (Basel) ; 7(4)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919629

RESUMO

Rhizosphere-resident fungi that are helpful to plants are generally termed as 'plant growth promoting fungi' (PGPF). These fungi are one of the chief sources of the biotic inducers known to give their host plants numerous advantages, and they play a vital role in sustainable agriculture. Today's biggest challenge is to satisfy the rising demand for crop protection and crop yield without harming the natural ecosystem. Nowadays, PGPF has become an eco-friendly way to improve crop yield by enhancing seed germination, shoot and root growth, chlorophyll production, and fruit yield, etc., either directly or indirectly. The mode of action of these PGPF includes the solubilization and mineralization of the essential micro- and macronutrients needed by plants to regulate the balance for various plant processes. PGPF produce defense-related enzymes, defensive/volatile compounds, and phytohormones that control pathogenic microbes' growth, thereby assisting the plants in facing various biotic and abiotic stresses. Therefore, this review presents a holistic view of PGPF as efficient natural biofertilizers to improve crop plants' growth and resistance.

14.
Sci Rep ; 11(1): 5444, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686169

RESUMO

Green synthesized nanoparticles (NPs) have emerged as a new and promising alternative to overcome the drug resistance problem. Peculiar nano-specific features of palladium NPs (Pd-NPs) offer invaluable possibilities for clinical treatment. Due to the development of multi-drug resistance (MDR) in pathogenic bacteria and the prevalence of cancers, use of algae-mediated Pd-NPs could be a prospective substitute. Therefore, Pd-NPs were synthesized by a one-step, cost-effective, and environmentally friendly green method using the extract from a brown alga, Padina boryana (PB-extract), and evaluated for their antibacterial, antibiofilm, and anticancer activities. Pd-NPs were physicochemically characterized for size, shape, morphology, surface area, charge, atomic composition, crystal structure, and capping of Pd-NPs by PB-extract biomolecules by various techniques. The data revealed crystalline Pd-NPs with an average diameter of 8.7 nm, crystal size/structure of 11.16 nm/face-centered cubic, lattice d-spacing of 0.226 nm, 28.31% as atomic percentage, surface area of 16.1 m2/g, hydrodynamic size of 48 nm, and zeta-potential of - 28.7 ± 1.6 mV. Fourier-transform infrared spectroscopy (FT-IR) analysis revealed the role of PB-extract in capping of Pd-NPs by various functional groups such as -OH, C=C, C-O, and C-N from phenols, aliphatic hydrocarbons, aromatic rings, and aliphatic amine. Out of 31, 23 compounds were found involved in biosynthesis by Gas chromatography-mass spectrometry (GC-MS) analysis. Isolated strains were identified as MDR Staphylococcus aureus, Escherichia fergusonii, Acinetobacter pittii, Pseudomonas aeruginosa, Aeromonas enteropelogenes, and Proteus mirabilis and Pd-NPs exhibited strong antibacterial/antibiofilm activities against them with minimum inhibitory concentration (MIC) in the range of 62.5-125 µg/mL. Moreover, cell viability assays showed concentration-dependent anti-proliferation of breast cancer MCF-7 cells. Pd-NPs also enhanced mRNA expression of apoptotic marker genes in the order: p53 (5.5-folds) > bax (3.5-folds) > caspase-3 (3-folds) > caspase-9 (2-folds) at 125 µg/mL. This study suggested the possible role of PB-extract capped Pd-NPs for successful clinical management of MDR pathogens and breast cancer cells.


Assuntos
Antibacterianos , Antineoplásicos , Bactérias/crescimento & desenvolvimento , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Química Verde , Nanopartículas Metálicas , Neoplasias/tratamento farmacológico , Paládio , /química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Neoplasias/metabolismo , Paládio/química , Paládio/farmacologia
15.
Saudi J Biol Sci ; 28(1): 302-309, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33424310

RESUMO

Urinary tract infections are second most important diseases worldwide due to the increased amount of antibiotic resistant microbes. Among the Gram negative bacteria, P. mirabilis is the dominant biofilm producer in urinary tract infections next to E. coli. Biofilm is a process that produced self-matrix of more virulence pathogens on colloidal surfaces. Based on the above fact, this study was concentrated to inhibit the P. mirabilis biofilm formation by various in-vitro experiments. In the current study, the anti-biofilm effect of essential oils was recovered from the medicinal plant of Solanum nigrum, and confirmed the available essential oils by liquid chromatography-mass spectroscopy analysis. The excellent anti-microbial activity and minimum biofilm inhibition concentration of the essential oils against P. mirabilis was indicated at 200 µg/mL. The absence of viability and altered exopolysaccharide structure of treated cells were showed by biofilm metabolic assay and phenol-sulphuric acid method. The fluorescence differentiation of P. mirabilis treated cells was showed with more damages by confocal laser scanning electron microscope. Further, more morphological changes of essential oils treated cells were differentiated from normal cells by scanning electron microscope. Altogether, the results were reported that the S. nigrum essential oils have anti-biofilm ability.

16.
Saudi J Biol Sci ; 27(12): 3547-3552, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32837220

RESUMO

Severe Acute Respiratory Syndrome Coronavirus2 (SARS-CoV2) provoked alertness globally. Existing pandemic eruption of infections with SARS-CoV2 has been phrased as coronavirus disease 2019 (covid-19). Worldwide pneumonia outburst attributable to new SARS-CoV2 alleged to be originated in Wuhan city of China and has affectation of enormous danger regarding civic wellbeing. As of 11 March 2020, international death toll owing to outburst of new coronavirus was approximately 3,800, and about 110,000 have been declared as confirmed cases. The novel SARS-CoV2 demonstrated competence with respect to human to human communication; therefore depicted exponential intensification of cases. As of March 23, there are 374,513 collective cases of global infections; more than 16,350 deaths and number of recovered cases is 101,554. Now Europe has turn out into new epicenter of lethal coronavirus. More than one third of the covid 19 cases are currently outside China. Presently Italy is one of worst hit countries followed by Spain. The rapid global widespread of novel covid-19 viruses lead to World Health Organization (WHO) to declare outbreak as pandemic. Given to seriousness of present scenario an accurate and rapid classification of noxious pathogenic virus is important which will lend a hand in opting for best fitting drugs. The screening program will aid saving people's lives and help to put off the pandemic situation. The scientists and researchers should collaborate nationally and internationally to win the battle against novel covid-19. We aimed to represent covid 19 outburst scenario in general and Saudi Arabia in particular. This short review report very briefly highlights covid-19 syndromes; propagation; Middle East outburst, natural products as cure for viral diseases, probable psychosomatic effects, protective measures and Islamic wisdom. SARS-CoV2 is subsequent coronavirus outburst that perturbs Middle East, after SARS-CoV and MERS-CoV which has been originated in kingdom of Saudi Arabia in year 2002 and 2012 respectively. The report covers information and developments till 23rd of March 2020 on basis of current published data and studies published on different scientific web-pages.

18.
Biomolecules ; 10(7)2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630019

RESUMO

In this work, we aimed to synthesize zinc oxide nanoparticles (ZnONPs) using an aqueous extract of Cassia auriculata leaves (CAE) at room temperature without the provision of additional surfactants or capping agents. The formation of as-obtained ZnONPs was analyzed by UV-visible (ultraviolet) absorption and emission spectroscopy, X-ray photoemission spectroscopy (XPS), X-ray diffraction analysis (XRD), energy dispersive X-ray diffraction (EDX), thermogravimetric analysis/differential thermal analysis (TGA-DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The XRD results reflect the wurtzite structure of as-prepared ZnONPs, which produced diffraction patterns showing hexagonal phases. The SEM images indicate that the morphology of as-prepared ZnONPs is composed of hexagonal nanostructures with an average diameter of 20 nm. The HR-TEM result shows that the inter-planar distance between two lattice fringes is 0.260 nm, which coincides with the distance between the adjacent (d-spacing) of the (002) lattice plane of ZnO. The fluorescence emission spectrum of ZnONPs dispersed in ethanol shows an emission maximum at 569 nm, revealing the semiconductor nature of ZnO. As-obtained ZnONPs enhanced the tumoricidal property of CAE in MCF-7 breast cancer cells without significant inhibition of normal human breast cells, MCF-12A. Furthermore, we have studied the antibacterial effects of ZnONPs, which showed direct cell surface contact, resulting in the disturbance of bacterial cell integrity.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Fabaceae/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Antibacterianos/química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Química Verde , Humanos , Células MCF-7 , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Folhas de Planta/química , Difração de Raios X
19.
Saudi J Biol Sci ; 27(8): 1985-1992, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32714022

RESUMO

The objective of the present work was to observe and profile various antibiotic resistant strains of Staphylococcus aureus and highlight the need for continuous surveillance. Data regarding antibiotic-resistant S. aureus strains isolated and identified at the Medical Microbiology Department, King Khalid Hospital, Riyadh was obtained. Bacterial isolates were collected from several sites of infections in patients and an evaluation of susceptibility were carried out using a fully automated Vitek2 system. Relative frequency (%), odds ratios and Ward's minimum variance were calculated. The results showed that wounds were a source of more than 40% of the S. aureus (MRSA) strains that have ability to resist methicillin, and more than 45% of the methicillin-susceptible S. aureus (non-MRSA) strains. 40% of the isolates were MRSA (N = 251), and all MRSA strains were sensitive to vancomycin, daptomycin, teicoplanin, tigecycline, nitrofurantoin, and itraconazole while all non-MRSA (N = 338) strains were sensitive to vancomycin, cefoxitin, daptomycin, gentamicin, oxacillin, teicoplanin, tigecycline, and mupirocin. Strength of association between antibiotic-resistant S. aureus strains and source of samples (site of infection) was established. The study concluded that S. aureus strains had developed resistance towards 20 (for non-MRSA) and 22 (for MRSA) of the antibiotics tested. All MRSA strains were non-sensitive to amoxicillin/clavulanate, ampicillin cefoxitin, cefazolin, imipenem, oxacillin, and penicillin.

20.
Antibiotics (Basel) ; 9(5)2020 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32429514

RESUMO

Synthesis of nanoparticles using the plants has several advantages over other methods due to the environmentally friendly nature of plants. Besides being environmentally friendly, the synthesis of nanoparticles using plants or parts of the plants is also cost effective. The present study focuses on the biosynthesis of zinc oxide nanoparticles (ZnO NPs) using the seed extract of Butea monsoperma and their effect on to the quorum-mediated virulence factors of multidrug-resistant clinical isolates of Pseudomonas aeruginosa at sub minimum inhibitory concentration (MIC). The synthesized ZnO NPs were characterized by different techniques, such as Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and transmission electron microscopy (TEM). The average size of the nanoparticles was 25 nm as analyzed by TEM. ZnO NPs at sub MIC decreased the production of virulence factors such as pyocyanin, protease and hemolysin for P. aeruginosa (p ≤ 0.05). The interaction of NPs with the P. aeruginosa cells on increasing concentration of NPs at sub MIC levels showed greater accumulation of nanoparticles inside the cells as analyzed by TEM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...